Spiacenti, questo contenuto non ha traduzione nella lingua selezionata. I dati verranno visualizzati in inglese.

A general computational recognition primed decision model with multi-agent rescue simulation benchmark

Authors
Nowroozi, Alireza ; Shiri, Mohammad E. ; Aslanian, Angeh ; Lucas, Caro

Analytical decision making strategies rely on weighing pros and cons of multiple options in an unbounded rationality manner. Contrary to these strategies, recognition primed decision (RPD) model which is a primary naturalistic decision making (NDM) approach assumes that experienced and professional decision makers when encounter problems in real operating conditions are able to use their previous experiences and trainings in order to diagnose the problem, recall the appropriate solution, evaluate it mentally, and implement it to handle the problem in a satisficing manner. In this paper, a computational form of RPD, now called C-RPD, is presented. Unified Modeling Language was used as a modeling language to represent the proposed C-RPD model in order to make the implementation easy and obvious. To execute the model, RoboCup Rescue agent simulation environment, which is one of the best and the most famous complex and multi-agent large-scale environments, was selected. The environment simulates the incidence of fire and earthquakes in urban areas where it is the duty of the police forces, firefighters and ambulance teams to control the crisis. Firefighters of SOS team are first modeled and implemented by utilizing C-RPD and then the system is trained using an expert experience. There are two evaluations. To find out the convergence of different versions developed during experience adding, some of the developed versions are chosen and evaluated on seven maps. Results show performance improvements. The SOS team ranked first in an official world championship and three official open tournaments.

Codebooks
SLR Criteria
Summary

Quantitative analysis of the simulation data

SLR Criteria
Summary

Simulation.

Summary

Burnt Area Proportion (between 0 and 1) (?)Death toll Proportion (between 0 and 1) (?)

Summary

To execute the model, RoboCup Rescue agent simulation environment, which is one of the best and the most famous complex and multi-agent large-scale environments, was selected. The environment simulates the incidence of fire and earthquakes in urban areas where it is the duty of the police forces, firefighters and ambulance teams to control the crisis.“To show the model’s practicality, we first presented an agent model for fire brigades in the proposed framework of C-RPD, and then implemented it as fire brigades of Polytechnic’s SOS team. Later, an expert trained the system using his and other teams’ experiences one by one. The developed system was validated in two forms. The first was the validation of system’s various versions developed while training it with expert’s experiences. The test shows the system convergence while adding experiences. The second was the official validation of the whole SOS team in four official contests.” (p. 55)“It is possible to evaluate rescue simulation teams in two ways: (1) the descriptive approach which analyzes agents’ behavior and (2) the official approach which evaluates the performance by the team’s final score or the agents’ scores” (p. 61)

SLR Criteria
Summary

Benchmark data from the simulation runs

SLR Criteria
Summary

Not explicitly stated … something like: how good is our approach in the RoboCup Rescue multi agent environment?

SLR Criteria
Summary

“Not only did the SOS team rank first in all four tournaments, but the firefighters’ excellent performance amazed the other teams as well.” (p. 55)Results show performance improvements. The SOS team ranked first in an official world championship and three official open tournaments.

SLR Criteria
Summary

Not applicable.

SLR Criteria
Summary

Simulation (in RoboCup Rescue agent simulation environment) , to test the functionality and practical benefits of a novel approach (C-RPD).

 

 

eu Il sito web Portfolio of Solutions è stato inizialmente sviluppato nell'ambito del progetto DRIVER+. Oggi, il servizio è gestito da AIT Austrian Institute of Technology GmbH, a beneficio della gestione europea delle . PoS è approvato e supportato dal Disaster Competence Network Austria (DCNA) così come dai progetti STAMINA e TeamAware H2020.